Innate Immunity in infectious and autoimmune diseases

Afficher tout

Projects and grants

1) Study of NK cell differentiation and activation (PI: T Walzer, funded by ERC)

NK cells express a wide range of transcription factors that control their genetic program. We recently found that Zeb2, a transcription factor previously involved in epithelial-to-mesenchymal transition, was highly expressed in NK cells and regulated terminal NK cell maturation by sustaining the action of T-bet. Current research aims at understanding the respective roles of T-box vs Zeb family members in NK cell differentiation using dedicated transgenic mouse models.

NK cell activity is also highly regulated by various cytokines. IL-15 has a central role NK cell biology, by promoting both their development and survival at the periphery and their activation following infection. We recently found that mTOR was an essential checkpoint of NK cell activation dowstream IL-15. We now try to understand how mTORC1 and mTORC2 influence NK cell reactivity and how mTOR action is regulated by various receptors. We also study mTOR regulation in NK cells during cancer progression, and explore strategies to increase mTOR activity in NK cells.

 

2 )Role of S1PR5 in NK cell trafficking (PI: T Walzer, Industrial partners)

NK cells develop in the bone marrow. We previously showed that their release into the circulation was dependent both on the engagement of the chemotactic receptor S1PR5 by sphingosine-1-phosphate and on CXCR4 desensitization by SDF-1. Our current work aims at understanding the role of S1PR5 in various pathological situations, and to understand the role of S1PR5 in human NK cell migration.

Image

3) NK cell exhaustion in chronically-infected patients (PI: U Hasan, Grants: ANRS, LNCC)

NK cells play an essential role to eradicate Hepatitis B virus (HBV) via attacking the infected cell by cytotoxicity and releasing large amounts of IFN-γ. Nevertheless, HBV has developed mechanisms to negatively deregulate NK cell function.  NK cells also display decreased production of antiviral cytokines in HCV and HIV infected individuals. These patients possess NK cells with an altered  ‘CD56neg and/or exhaustive’ phenotype. Although there are increasing data implying that these subsets do exist, a full characterization of the panel of NK cell receptors and function has not been concisely attributed. Furthermore, the biological and cellular modifications that alters NK cell function by HBV remains to be studied and is central to our research program.Our three main aims include:
-Using mass cytometry to phenotype the different NK cell subpopulations with functional defects due to HBV chronicity in patients.
-Determine the phosphorylation status and biological events that drive NK cell deregulation.
-Use a CRISPR/cas9 library to identify new genes that are involved in NK cell dysfunction

4) New monogenic forms of SLE (PI: A Belot, Grants: ANR)

In order to investigate Human tolerance mechanisms, we aim at identifying new forms of monogenic autoimmunity. Systemic Lupus Erythematous (SLE) is the prototypic autoimmune disease resulting from a breakdown of tolerance to self-antigens and production of autoantibodies. SLE is assumed to occur due to a complex interplay of environmental and genetic factors. Recently, rare causes of monogenic SLE have been described, providing unique insight into fundamental mechanisms of immune tolerance. Using Whole Exome Sequencing, we recently identified Protein Kinase C-δ as a new mendelian cause of SLE secondary to PRKCD mutation, enhancing the major role of B cell tolerance in lupus pathogenesis. We recently performed redirected sequencing of about 200 genes in a cohort of more than a hundred patients with pediatric onset lupus. We perform bioinformatic analyses and sanger sequencing to identify new causes of monogenic SLE. We will also generate mouse models for selected mutations, in order to understand the mechanism.